1 module bgfx_extras.nanovg; 2 3 private { 4 import bx.bx : AllocatorI; 5 import bgfx_extras.fontstash; 6 } 7 8 // 9 // Copyright (c) 2013 Mikko Mononen memon@inside.org 10 // 11 // This software is provided 'as-is', without any express or implied 12 // warranty. In no event will the authors be held liable for any damages 13 // arising from the use of this software. 14 // Permission is granted to anyone to use this software for any purpose, 15 // including commercial applications, and to alter it and redistribute it 16 // freely, subject to the following restrictions: 17 // 1. The origin of this software must not be misrepresented; you must not 18 // claim that you wrote the original software. If you use this software 19 // in a product, an acknowledgment in the product documentation would be 20 // appreciated but is not required. 21 // 2. Altered source versions must be plainly marked as such, and must not be 22 // misrepresented as being the original software. 23 // 3. This notice may not be removed or altered from any source distribution. 24 // 25 26 enum NVG_PI = 3.14159265358979323846264338327f; 27 28 // nanovg.cpp 29 30 enum NVG_MAX_STATES= 32; 31 enum NVG_MAX_FONTIMAGES = 4; 32 33 struct NVGstate { 34 NVGpaint fill; 35 NVGpaint stroke; 36 float strokeWidth; 37 float miterLimit; 38 int lineJoin; 39 int lineCap; 40 float alpha; 41 float[6] xform; 42 NVGscissor scissor; 43 float fontSize; 44 float letterSpacing; 45 float lineHeight; 46 float fontBlur; 47 int textAlign; 48 int fontId; 49 } 50 51 struct NVGpoint { 52 float x,y; 53 float dx, dy; 54 float len; 55 float dmx, dmy; 56 ubyte flags; 57 } 58 59 struct NVGpathCache { 60 NVGpoint[] points; 61 int npoints; 62 int cpoints; 63 NVGpath[] paths; 64 int npaths; 65 int cpaths; 66 NVGvertex[] verts; 67 int nverts; 68 int cverts; 69 float[4] bounds; 70 } 71 72 struct NVGcontext { 73 NVGparams params; 74 float* commands; 75 int ccommands; 76 int ncommands; 77 float commandx, commandy; 78 NVGstate[NVG_MAX_STATES] states; 79 int nstates; 80 NVGpathCache* cache; 81 float tessTol; 82 float distTol; 83 float fringeWidth; 84 float devicePxRatio; 85 FONScontext* fs; 86 int[NVG_MAX_FONTIMAGES] fontImages; 87 int fontImageIdx; 88 int drawCallCount; 89 int fillTriCount; 90 int strokeTriCount; 91 int textTriCount; 92 } 93 94 // 95 96 struct NVGcolor { 97 float r, g, b, a; 98 99 @property float[4] rgba() { 100 return [r, g, b, a]; 101 } 102 @property float[4] rgba(float[4] n_rgba) { 103 r = n_rgba[0]; 104 g = n_rgba[1]; 105 b = n_rgba[2]; 106 a = n_rgba[3]; 107 return n_rgba; 108 } 109 } 110 111 struct NVGpaint { 112 float[6] xform; 113 float[2] extent; 114 float radius; 115 float feather; 116 NVGcolor innerColor; 117 NVGcolor outerColor; 118 int image; 119 } 120 121 enum NVGwinding { 122 NVG_CCW = 1, // Winding for solid shapes 123 NVG_CW = 2, // Winding for holes 124 } 125 126 enum NVGsolidity { 127 NVG_SOLID = 1, // CCW 128 NVG_HOLE = 2, // CW 129 } 130 131 enum NVGlineCap { 132 NVG_BUTT, 133 NVG_ROUND, 134 NVG_SQUARE, 135 NVG_BEVEL, 136 NVG_MITER, 137 } 138 139 enum NVGalign { 140 // Horizontal align 141 NVG_ALIGN_LEFT = 1<<0, // Default, align text horizontally to left. 142 NVG_ALIGN_CENTER = 1<<1, // Align text horizontally to center. 143 NVG_ALIGN_RIGHT = 1<<2, // Align text horizontally to right. 144 // Vertical align 145 NVG_ALIGN_TOP = 1<<3, // Align text vertically to top. 146 NVG_ALIGN_MIDDLE = 1<<4, // Align text vertically to middle. 147 NVG_ALIGN_BOTTOM = 1<<5, // Align text vertically to bottom. 148 NVG_ALIGN_BASELINE = 1<<6, // Default, align text vertically to baseline. 149 } 150 151 struct NVGglyphPosition { 152 const(char)* str; // Position of the glyph in the input string. 153 float x; // The x-coordinate of the logical glyph position. 154 float minx, maxx; // The bounds of the glyph shape. 155 } 156 157 struct NVGtextRow { 158 const(char)* start; // Pointer to the input text where the row starts. 159 const(char)* end; // Pointer to the input text where the row ends (one past the last character). 160 const(char)* next; // Pointer to the beginning of the next row. 161 float width; // Logical width of the row. 162 float minx, maxx; // Actual bounds of the row. Logical with and bounds can differ because of kerning and some parts over extending. 163 } 164 165 enum NVGimageFlags { 166 NVG_IMAGE_GENERATE_MIPMAPS = 1<<0, // Generate mipmaps during creation of the image. 167 NVG_IMAGE_REPEATX = 1<<1, // Repeat image in X direction. 168 NVG_IMAGE_REPEATY = 1<<2, // Repeat image in Y direction. 169 NVG_IMAGE_FLIPY = 1<<3, // Flips (inverses) image in Y direction when rendered. 170 NVG_IMAGE_PREMULTIPLIED = 1<<4, // Image data has premultiplied alpha. 171 } 172 173 extern(C) @nogc nothrow { 174 175 // Begin drawing a new frame 176 // Calls to nanovg drawing API should be wrapped in nvgBeginFrame() & nvgEndFrame() 177 // nvgBeginFrame() defines the size of the window to render to in relation currently 178 // set viewport (i.e. glViewport on GL backends). Device pixel ration allows to 179 // control the rendering on Hi-DPI devices. 180 // For example, GLFW returns two dimension for an opened window: window size and 181 // frame buffer size. In that case you would set windowWidth/Height to the window size 182 // devicePixelRatio to: frameBufferWidth / windowWidth. 183 void nvgBeginFrame(NVGcontext* ctx, int windowWidth, int windowHeight, float devicePixelRatio); 184 185 // Cancels drawing the current frame. 186 void nvgCancelFrame(NVGcontext* ctx); 187 188 // Ends drawing flushing remaining render state. 189 void nvgEndFrame(NVGcontext* ctx); 190 191 // 192 // Color utils 193 // 194 // Colors in NanoVG are stored as unsigned ints in ABGR format. 195 196 // Returns a color value from red, green, blue values. Alpha will be set to 255 (1.0f). 197 NVGcolor nvgRGB(ubyte r, ubyte g, ubyte b); 198 199 // Returns a color value from red, green, blue values. Alpha will be set to 1.0f. 200 NVGcolor nvgRGBf(float r, float g, float b); 201 202 203 // Returns a color value from red, green, blue and alpha values. 204 NVGcolor nvgRGBA(ubyte r, ubyte g, ubyte b, ubyte a); 205 206 // Returns a color value from red, green, blue and alpha values. 207 NVGcolor nvgRGBAf(float r, float g, float b, float a); 208 209 210 // Linearly interpolates from color c0 to c1, and returns resulting color value. 211 NVGcolor nvgLerpRGBA(NVGcolor c0, NVGcolor c1, float u); 212 213 // Sets transparency of a color value. 214 NVGcolor nvgTransRGBA(NVGcolor c0, ubyte a); 215 216 // Sets transparency of a color value. 217 NVGcolor nvgTransRGBAf(NVGcolor c0, float a); 218 219 // Returns color value specified by hue, saturation and lightness. 220 // HSL values are all in range [0..1], alpha will be set to 255. 221 NVGcolor nvgHSL(float h, float s, float l); 222 223 // Returns color value specified by hue, saturation and lightness and alpha. 224 // HSL values are all in range [0..1], alpha in range [0..255] 225 NVGcolor nvgHSLA(float h, float s, float l, ubyte a); 226 227 // 228 // State Handling 229 // 230 // NanoVG contains state which represents how paths will be rendered. 231 // The state contains transform, fill and stroke styles, text and font styles, 232 // and scissor clipping. 233 234 // Pushes and saves the current render state into a state stack. 235 // A matching nvgRestore() must be used to restore the state. 236 void nvgSave(NVGcontext* ctx); 237 238 // Pops and restores current render state. 239 void nvgRestore(NVGcontext* ctx); 240 241 // Resets current render state to default values. Does not affect the render state stack. 242 void nvgReset(NVGcontext* ctx); 243 244 // 245 // Render styles 246 // 247 // Fill and stroke render style can be either a solid color or a paint which is a gradient or a pattern. 248 // Solid color is simply defined as a color value, different kinds of paints can be created 249 // using nvgLinearGradient(), nvgBoxGradient(), nvgRadialGradient() and nvgImagePattern(). 250 // 251 // Current render style can be saved and restored using nvgSave() and nvgRestore(). 252 253 // Sets current stroke style to a solid color. 254 void nvgStrokeColor(NVGcontext* ctx, NVGcolor color); 255 256 // Sets current stroke style to a paint, which can be a one of the gradients or a pattern. 257 void nvgStrokePaint(NVGcontext* ctx, NVGpaint paint); 258 259 // Sets current fill style to a solid color. 260 void nvgFillColor(NVGcontext* ctx, NVGcolor color); 261 262 // Sets current fill style to a paint, which can be a one of the gradients or a pattern. 263 void nvgFillPaint(NVGcontext* ctx, NVGpaint paint); 264 265 // Sets the miter limit of the stroke style. 266 // Miter limit controls when a sharp corner is beveled. 267 void nvgMiterLimit(NVGcontext* ctx, float limit); 268 269 // Sets the stroke width of the stroke style. 270 void nvgStrokeWidth(NVGcontext* ctx, float size); 271 272 // Sets how the end of the line (cap) is drawn, 273 // Can be one of: NVG_BUTT (default), NVG_ROUND, NVG_SQUARE. 274 void nvgLineCap(NVGcontext* ctx, int cap); 275 276 // Sets how sharp path corners are drawn. 277 // Can be one of NVG_MITER (default), NVG_ROUND, NVG_BEVEL. 278 void nvgLineJoin(NVGcontext* ctx, int join); 279 280 // Sets the transparency applied to all rendered shapes. 281 // Alreade transparent paths will get proportionally more transparent as well. 282 void nvgGlobalAlpha(NVGcontext* ctx, float alpha); 283 284 // 285 // Transforms 286 // 287 // The paths, gradients, patterns and scissor region are transformed by an transformation 288 // matrix at the time when they are passed to the API. 289 // The current transformation matrix is a affine matrix: 290 // [sx kx tx] 291 // [ky sy ty] 292 // [ 0 0 1] 293 // Where: sx,sy define scaling, kx,ky skewing, and tx,ty translation. 294 // The last row is assumed to be 0,0,1 and is not stored. 295 // 296 // Apart from nvgResetTransform(), each transformation function first creates 297 // specific transformation matrix and pre-multiplies the current transformation by it. 298 // 299 // Current coordinate system (transformation) can be saved and restored using nvgSave() and nvgRestore(). 300 301 // Resets current transform to a identity matrix. 302 void nvgResetTransform(NVGcontext* ctx); 303 304 // Premultiplies current coordinate system by specified matrix. 305 // The parameters are interpreted as matrix as follows: 306 // [a c e] 307 // [b d f] 308 // [0 0 1] 309 void nvgTransform(NVGcontext* ctx, float a, float b, float c, float d, float e, float f); 310 311 // Translates current coordinate system. 312 void nvgTranslate(NVGcontext* ctx, float x, float y); 313 314 // Rotates current coordinate system. Angle is specified in radians. 315 void nvgRotate(NVGcontext* ctx, float angle); 316 317 // Skews the current coordinate system along X axis. Angle is specified in radians. 318 void nvgSkewX(NVGcontext* ctx, float angle); 319 320 // Skews the current coordinate system along Y axis. Angle is specified in radians. 321 void nvgSkewY(NVGcontext* ctx, float angle); 322 323 // Scales the current coordinate system. 324 void nvgScale(NVGcontext* ctx, float x, float y); 325 326 // Stores the top part (a-f) of the current transformation matrix in to the specified buffer. 327 // [a c e] 328 // [b d f] 329 // [0 0 1] 330 // There should be space for 6 floats in the return buffer for the values a-f. 331 void nvgCurrentTransform(NVGcontext* ctx, float* xform); 332 333 334 // The following functions can be used to make calculations on 2x3 transformation matrices. 335 // A 2x3 matrix is represented as float[6]. 336 337 // Sets the transform to identity matrix. 338 void nvgTransformIdentity(float* dst); 339 340 // Sets the transform to translation matrix matrix. 341 void nvgTransformTranslate(float* dst, float tx, float ty); 342 343 // Sets the transform to scale matrix. 344 void nvgTransformScale(float* dst, float sx, float sy); 345 346 // Sets the transform to rotate matrix. Angle is specified in radians. 347 void nvgTransformRotate(float* dst, float a); 348 349 // Sets the transform to skew-x matrix. Angle is specified in radians. 350 void nvgTransformSkewX(float* dst, float a); 351 352 // Sets the transform to skew-y matrix. Angle is specified in radians. 353 void nvgTransformSkewY(float* dst, float a); 354 355 // Sets the transform to the result of multiplication of two transforms, of A = A*B. 356 void nvgTransformMultiply(float* dst, const(float)* src); 357 358 // Sets the transform to the result of multiplication of two transforms, of A = B*A. 359 void nvgTransformPremultiply(float* dst, const(float)* src); 360 361 // Sets the destination to inverse of specified transform. 362 // Returns 1 if the inverse could be calculated, else 0. 363 int nvgTransformInverse(float* dst, const(float)* src); 364 365 // Transform a point by given transform. 366 void nvgTransformPoint(float* dstx, float* dsty, const(float)* xform, float srcx, float srcy); 367 368 // Converts degrees to radians and vice versa. 369 float nvgDegToRad(float deg); 370 float nvgRadToDeg(float rad); 371 372 // 373 // Images 374 // 375 // NanoVG allows you to load jpg, png, psd, tga, pic and gif files to be used for rendering. 376 // In addition you can upload your own image. The image loading is provided by stb_image. 377 // The parameter imageFlags is combination of flags defined in NVGimageFlags. 378 379 // Creates image by loading it from the disk from specified file name. 380 // Returns handle to the image. 381 int nvgCreateImage(NVGcontext* ctx, const(char)* filename, int imageFlags); 382 383 // Creates image by loading it from the specified chunk of memory. 384 // Returns handle to the image. 385 int nvgCreateImageMem(NVGcontext* ctx, int imageFlags, ubyte* data, int ndata); 386 387 // Creates image from specified image data. 388 // Returns handle to the image. 389 int nvgCreateImageRGBA(NVGcontext* ctx, int w, int h, int imageFlags, const(ubyte)* data); 390 391 // Updates image data specified by image handle. 392 void nvgUpdateImage(NVGcontext* ctx, int image, const(ubyte)* data); 393 394 // Returns the dimensions of a created image. 395 void nvgImageSize(NVGcontext* ctx, int image, int* w, int* h); 396 397 // Deletes created image. 398 void nvgDeleteImage(NVGcontext* ctx, int image); 399 400 // 401 // Paints 402 // 403 // NanoVG supports four types of paints: linear gradient, box gradient, radial gradient and image pattern. 404 // These can be used as paints for strokes and fills. 405 406 // Creates and returns a linear gradient. Parameters (sx,sy)-(ex,ey) specify the start and end coordinates 407 // of the linear gradient, icol specifies the start color and ocol the end color. 408 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). 409 NVGpaint nvgLinearGradient(NVGcontext* ctx, float sx, float sy, float ex, float ey, 410 NVGcolor icol, NVGcolor ocol); 411 412 // Creates and returns a box gradient. Box gradient is a feathered rounded rectangle, it is useful for rendering 413 // drop shadows or hilights for boxes. Parameters (x,y) define the top-left corner of the rectangle, 414 // (w,h) define the size of the rectangle, r defines the corner radius, and f feather. Feather defines how blurry 415 // the border of the rectangle is. Parameter icol specifies the inner color and ocol the outer color of the gradient. 416 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). 417 NVGpaint nvgBoxGradient(NVGcontext* ctx, float x, float y, float w, float h, 418 float r, float f, NVGcolor icol, NVGcolor ocol); 419 420 // Creates and returns a radial gradient. Parameters (cx,cy) specify the center, inr and outr specify 421 // the inner and outer radius of the gradient, icol specifies the start color and ocol the end color. 422 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). 423 NVGpaint nvgRadialGradient(NVGcontext* ctx, float cx, float cy, float inr, float outr, 424 NVGcolor icol, NVGcolor ocol); 425 426 // Creates and returns an image patter. Parameters (ox,oy) specify the left-top location of the image pattern, 427 // (ex,ey) the size of one image, angle rotation around the top-left corner, image is handle to the image to render. 428 // The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint(). 429 NVGpaint nvgImagePattern(NVGcontext* ctx, float ox, float oy, float ex, float ey, 430 float angle, int image, float alpha); 431 432 // 433 // Scissoring 434 // 435 // Scissoring allows you to clip the rendering into a rectangle. This is useful for varius 436 // user interface cases like rendering a text edit or a timeline. 437 438 // Sets the current scissor rectangle. 439 // The scissor rectangle is transformed by the current transform. 440 void nvgScissor(NVGcontext* ctx, float x, float y, float w, float h); 441 442 // Intersects current scissor rectangle with the specified rectangle. 443 // The scissor rectangle is transformed by the current transform. 444 // Note: in case the rotation of previous scissor rect differs from 445 // the current one, the intersection will be done between the specified 446 // rectangle and the previous scissor rectangle transformed in the current 447 // transform space. The resulting shape is always rectangle. 448 void nvgIntersectScissor(NVGcontext* ctx, float x, float y, float w, float h); 449 450 // Reset and disables scissoring. 451 void nvgResetScissor(NVGcontext* ctx); 452 453 // 454 // Paths 455 // 456 // Drawing a new shape starts with nvgBeginPath(), it clears all the currently defined paths. 457 // Then you define one or more paths and sub-paths which describe the shape. The are functions 458 // to draw common shapes like rectangles and circles, and lower level step-by-step functions, 459 // which allow to define a path curve by curve. 460 // 461 // NanoVG uses even-odd fill rule to draw the shapes. Solid shapes should have counter clockwise 462 // winding and holes should have counter clockwise order. To specify winding of a path you can 463 // call nvgPathWinding(). This is useful especially for the common shapes, which are drawn CCW. 464 // 465 // Finally you can fill the path using current fill style by calling nvgFill(), and stroke it 466 // with current stroke style by calling nvgStroke(). 467 // 468 // The curve segments and sub-paths are transformed by the current transform. 469 470 // Clears the current path and sub-paths. 471 void nvgBeginPath(NVGcontext* ctx); 472 473 // Starts new sub-path with specified point as first point. 474 void nvgMoveTo(NVGcontext* ctx, float x, float y); 475 476 // Adds line segment from the last point in the path to the specified point. 477 void nvgLineTo(NVGcontext* ctx, float x, float y); 478 479 // Adds cubic bezier segment from last point in the path via two control points to the specified point. 480 void nvgBezierTo(NVGcontext* ctx, float c1x, float c1y, float c2x, float c2y, float x, float y); 481 482 // Adds quadratic bezier segment from last point in the path via a control point to the specified point. 483 void nvgQuadTo(NVGcontext* ctx, float cx, float cy, float x, float y); 484 485 // Adds an arc segment at the corner defined by the last path point, and two specified points. 486 void nvgArcTo(NVGcontext* ctx, float x1, float y1, float x2, float y2, float radius); 487 488 // Closes current sub-path with a line segment. 489 void nvgClosePath(NVGcontext* ctx); 490 491 // Sets the current sub-path winding, see NVGwinding and NVGsolidity. 492 void nvgPathWinding(NVGcontext* ctx, int dir); 493 494 // Creates new circle arc shaped sub-path. The arc center is at cx,cy, the arc radius is r, 495 // and the arc is drawn from angle a0 to a1, and swept in direction dir (NVG_CCW, or NVG_CW). 496 // Angles are specified in radians. 497 void nvgArc(NVGcontext* ctx, float cx, float cy, float r, float a0, float a1, int dir); 498 499 // Creates new rectangle shaped sub-path. 500 void nvgRect(NVGcontext* ctx, float x, float y, float w, float h); 501 502 // Creates new rounded rectangle shaped sub-path. 503 void nvgRoundedRect(NVGcontext* ctx, float x, float y, float w, float h, float r); 504 505 // Creates new ellipse shaped sub-path. 506 void nvgEllipse(NVGcontext* ctx, float cx, float cy, float rx, float ry); 507 508 // Creates new circle shaped sub-path. 509 void nvgCircle(NVGcontext* ctx, float cx, float cy, float r); 510 511 // Fills the current path with current fill style. 512 void nvgFill(NVGcontext* ctx); 513 514 // Fills the current path with current stroke style. 515 void nvgStroke(NVGcontext* ctx); 516 517 518 // 519 // Text 520 // 521 // NanoVG allows you to load .ttf files and use the font to render text. 522 // 523 // The appearance of the text can be defined by setting the current text style 524 // and by specifying the fill color. Common text and font settings such as 525 // font size, letter spacing and text align are supported. Font blur allows you 526 // to create simple text effects such as drop shadows. 527 // 528 // At render time the font face can be set based on the font handles or name. 529 // 530 // Font measure functions return values in local space, the calculations are 531 // carried in the same resolution as the final rendering. This is done because 532 // the text glyph positions are snapped to the nearest pixels sharp rendering. 533 // 534 // The local space means that values are not rotated or scale as per the current 535 // transformation. For example if you set font size to 12, which would mean that 536 // line height is 16, then regardless of the current scaling and rotation, the 537 // returned line height is always 16. Some measures may vary because of the scaling 538 // since aforementioned pixel snapping. 539 // 540 // While this may sound a little odd, the setup allows you to always render the 541 // same way regardless of scaling. I.e. following works regardless of scaling: 542 // 543 // const char* txt = "Text me up."; 544 // nvgTextBounds(vg, x,y, txt, NULL, bounds); 545 // nvgBeginPath(vg); 546 // nvgRoundedRect(vg, bounds[0],bounds[1], bounds[2]-bounds[0], bounds[3]-bounds[1]); 547 // nvgFill(vg); 548 // 549 // Note: currently only solid color fill is supported for text. 550 551 // Creates font by loading it from the disk from specified file name. 552 // Returns handle to the font. 553 int nvgCreateFont(NVGcontext* ctx, const(char)* name, const(char)* filename); 554 555 // Creates image by loading it from the specified memory chunk. 556 // Returns handle to the font. 557 int nvgCreateFontMem(NVGcontext* ctx, const(char)* name, ubyte* data, int ndata, int freeData); 558 559 // Finds a loaded font of specified name, and returns handle to it, or -1 if the font is not found. 560 int nvgFindFont(NVGcontext* ctx, const(char)* name); 561 562 // Sets the font size of current text style. 563 void nvgFontSize(NVGcontext* ctx, float size); 564 565 // Sets the blur of current text style. 566 void nvgFontBlur(NVGcontext* ctx, float blur); 567 568 // Sets the letter spacing of current text style. 569 void nvgTextLetterSpacing(NVGcontext* ctx, float spacing); 570 571 // Sets the proportional line height of current text style. The line height is specified as multiple of font size. 572 void nvgTextLineHeight(NVGcontext* ctx, float lineHeight); 573 574 // Sets the text align of current text style, see NVGalign for options. 575 void nvgTextAlign(NVGcontext* ctx, int align_); 576 577 // Sets the font face based on specified id of current text style. 578 void nvgFontFaceId(NVGcontext* ctx, int font); 579 580 // Sets the font face based on specified name of current text style. 581 void nvgFontFace(NVGcontext* ctx, const(char)* font); 582 583 // Draws text string at specified location. If end is specified only the sub-string up to the end is drawn. 584 float nvgText(NVGcontext* ctx, float x, float y, const(char)* string, const(char)* end); 585 586 // Draws multi-line text string at specified location wrapped at the specified width. If end is specified only the sub-string up to the end is drawn. 587 // White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered. 588 // Words longer than the max width are slit at nearest character (i.e. no hyphenation). 589 void nvgTextBox(NVGcontext* ctx, float x, float y, float breakRowWidth, const(char)* string_, const(char)* end); 590 591 // Measures the specified text string. Parameter bounds should be a pointer to float[4], 592 // if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax] 593 // Returns the horizontal advance of the measured text (i.e. where the next character should drawn). 594 // Measured values are returned in local coordinate space. 595 float nvgTextBounds(NVGcontext* ctx, float x, float y, const(char)* string_, const(char)* end, float* bounds); 596 597 // Measures the specified multi-text string. Parameter bounds should be a pointer to float[4], 598 // if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax] 599 // Measured values are returned in local coordinate space. 600 void nvgTextBoxBounds(NVGcontext* ctx, float x, float y, float breakRowWidth, const(char)* string_, const(char)* end, float* bounds); 601 602 // Calculates the glyph x positions of the specified text. If end is specified only the sub-string will be used. 603 // Measured values are returned in local coordinate space. 604 int nvgTextGlyphPositions(NVGcontext* ctx, float x, float y, const(char)* string_, const(char)* end, NVGglyphPosition* positions, int maxPositions); 605 606 // Returns the vertical metrics based on the current text style. 607 // Measured values are returned in local coordinate space. 608 void nvgTextMetrics(NVGcontext* ctx, float* ascender, float* descender, float* lineh); 609 610 // Breaks the specified text into lines. If end is specified only the sub-string will be used. 611 // White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered. 612 // Words longer than the max width are slit at nearest character (i.e. no hyphenation). 613 int nvgTextBreakLines(NVGcontext* ctx, const(char)* string, const(char)* end, float breakRowWidth, NVGtextRow* rows, int maxRows); 614 615 } 616 617 // 618 // Internal Render API 619 // 620 enum NVGtexture { 621 NVG_TEXTURE_ALPHA = 0x01, 622 NVG_TEXTURE_RGBA = 0x02, 623 } 624 625 struct NVGscissor { 626 float[6] xform; 627 float[2] extent; 628 } 629 630 struct NVGvertex { 631 float x,y,u,v; 632 } 633 634 struct NVGpath { 635 int first; 636 int count; 637 ubyte closed; 638 int nbevel; 639 NVGvertex* fill; 640 int nfill; 641 NVGvertex* stroke; 642 int nstroke; 643 int winding; 644 int convex; 645 } 646 647 struct NVGparams { 648 void* userPtr; 649 int edgeAntiAlias; 650 int delegate(void* uptr) renderCreate; 651 int delegate(void* uptr, int type, int w, int h, int imageFlags, const(ubyte)* data) renderCreateTexture; 652 int delegate(void* uptr, int image) renderDeleteTexture; 653 int delegate(void* uptr, int image, int x, int y, int w, int h, const(ubyte)* data) renderUpdateTexture; 654 int delegate(void* uptr, int image, int* w, int* h) renderGetTextureSize; 655 void delegate(void* uptr, int width, int height) renderViewport; 656 void delegate(void* uptr) renderCancel; 657 void delegate(void* uptr) renderFlush; 658 void delegate(void* uptr, NVGpaint* paint, NVGscissor* scissor, float fringe, const(float)* bounds, const(NVGpath)* paths, int npaths) renderFill; 659 void delegate(void* uptr, NVGpaint* paint, NVGscissor* scissor, float fringe, float strokeWidth, const(NVGpath)* paths, int npaths) renderStroke; 660 void delegate(void* uptr, NVGpaint* paint, NVGscissor* scissor, const(NVGvertex)* verts, int nverts) renderTriangles; 661 void delegate(void* uptr) renderDelete; 662 } 663 664 extern(C) @nogc nothrow { 665 666 NVGcontext* nvgCreate(int edgeaa, ubyte _viewId, AllocatorI* _allocator = null); 667 void nvgViewId(NVGcontext* ctx, ubyte _viewId); 668 void nvgDelete(NVGcontext* ctx); 669 670 // Constructor and destructor, called by the render back-end. 671 NVGcontext* nvgCreateInternal(NVGparams* params); 672 void nvgDeleteInternal(NVGcontext* ctx); 673 674 NVGparams* nvgInternalParams(NVGcontext* ctx); 675 676 // Debug function to dump cached path data. 677 void nvgDebugDumpPathCache(NVGcontext* ctx); 678 679 } 680 681 682 // #define NVG_NOTUSED(v) for (;;) { (void)(1 ? (void)0 : ( (void)(v) ) ); break; } 683